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Procedure for obtaining and analyzing the diametric deformation of
a tunnel by means of tape extensometer convergence measures

A. Bernardo-Sanchez & M. Arlandi-Rodriguez
Tuneles y Geomecdnica S.L., Madrid, Spain

ABSTRACT: The diametric deformation of a tunnel (the ratio of tunnel wall displacement vs. tunnel radius) is
a very useful parameter to analyze its tenso-deformational behavior. In this paper we present a new methodology
for use it as monitoring variable to assess tunnel stability. It has obtained an analytical expression useful to obtain
the diametric deformation from tape extensometer convergence measures. A procedure to analyze the diametric
deformation is proposed. A practical example is carried out.

1 INTRODUCTION

Typically, the measurement of convergences is the
principal monitoring method for tunnels excavated in
rock. The convergence is measured with a tape exten-
someter, and it is a straightforward, simple, fast and
cheap method that it does not require the installa-
tion of sophisticated instrumental devices or indirect
measurement. Furthermore, the measuring interferes
very little in the construction of the tunnel. All these
advantages allow the installation of a large number of
benchmarks along the tunnel, which is an additional
advantage, because the heterogeneous behavior that
usually shows a rock mass.

However, like the rest of tunnel monitoring methods
is always difficult to perform an analysis of the mea-
surements obtained, especially if the number of data
is large. The tunnel geomechanical monitoring should
always tries to evaluate whether the measures indicate
the existence of instabilities, if it is required the rein-
forcement of the support or whether they indicate the
stabilization of the tunnel.

Usually convergence analysis provides a good eval-
uation of the degree of stabilization that a tunnel has
reached. On the other hand, does not always provide
a good indication of the state of charge of support or
the existence of deformational instabilities. Often it is
not easily transpose the results obtained by numerical
methods to measure movements; these movements will
depend on where the convergence’s rings are installed.

In this paper, it is presented a methodology for
monitoring of tunnels that is the use of Diametric
Deformation (g4) as a monitoring variable. For this
purpose, first it is described the calculation of the Dia-
metric Deformation based on convergence measures.
Here is suggested a method of analysis of Diamet-
ric Deformations in order to obtain the alarm levels
for monitoring the execution of the tunnel and an
estimation of the load level at which the support is
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Figure 1. Benchmarks section.

subjected. Finally we present a case of a tunnel, where
the proposed methodology is used

2 CONSTRUCTION OF A CIRCUMFERENCE
OF REFERENCE

ABC is a triangle whose vertices represent the bench-
marks used for monitoring convergence, see Figure 1.

Following the nomenclature commonly used, the
lines that are measured with a tape convergence would
be designated as follows:

Hl=AC
Dl=AB )
D2=BC

h, is the height of the triangle ABC, built on the H1
side. This height is perpendicular to the side of the
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Figure 2. Coordinate system.

triangle which is constructed and passes through the
vertex B. For any triangle, it is verified:

b )
where

[
r=5 J(D2+H1-D1) D2-H 1+ D1)(-D2+ H1+D1)( D2+H1+D2) (3)

In order to obtain the analytical equation of the
circle circumscribing the triangle ABC, we define a
coordinate system, see Figure 2, with origin at the
vertex A, x-axis in the direction defined by the seg-
ment AC and y-axis perpendicular to the previous and
therefore parallel to the height h,.

In this reference system, the coordinates of the
vertices of the triangle of convergences are:

A= (x,3) =(0,0)
B=(x5.75)=(X.Y) 4)
C=(x3.3) = (H1.0)

where the coordinates of the vertex B, are easily
obtained by the Pythagorean Theorem:

-

T

X= DP-pl= DI*- "
Hl (5

Y=h,= ‘
H1
The equation of a circle passing through three points
(X1, Y1), (X2, ¥2) and (x3, y3) is defined algebraically
by the following equation:

x oy x+yt
N yi LIS ©)
X,y nty o1
X3 W x:? + }’:‘: 1

Developing this determinant:

Mix=May+My(x> +37)= My =0 7
where:

noxpayi ol
ﬂr]f| = ¥2 X% +_V§ |

2
vi a3 +y3 1

¥

x) _r]2 +yl2 1
.'wg = X2 I% +y§ 1
2 2
X3 X3+ V3 1
3 X3+ ©)
Xy Y1 1
My=2x7 yy |1
X3 V3 1 {]0}
XX+t
My=x13 ¥ x% +y§
2, .2
X3 Vi X3ty [ll}
Dividing in Equation 7 by M3 and rearranging:
M My M
x? —_v2 + 0 T2y, T4 g
My~ My~ M, (12)
or
,\‘2+}=2+Dx+5}’+F=0 (13)
where:
po M
M,
— ¥ -
g="M (14)
M,
oM,
M,
Developing the determinants, we obtain:
M, =y, (3 +¥3) +ys (5] Ty Y (65 +y3)- (15)
-y3 (3 yD)-y2 (7 ¥y -y (65 +y3)
My = x) (x3+¥3) X3 (] +¥1)+ %3 (65 +y3) - (16)
“X3(x3 +¥2) X (5] +¥1)-x; (63 +¥3)
M3 =X y2 X3y FXoy3-X3Y2 -X2¥ 1 -X1Y3 (17)
2,2 2, 2.y 2,2
My =X y2 (X3 +¥3) T X3y (X3 +¥2) +Xo¥a(x] +¥7)-
(18)

X3¥2 (X7 +¥T )Xy (63 +¥3)-X1y3(3 +¥3)
Substituting for the values of the coordinates of
each vertex, see Equations 4 and 5, is simplified

significantly:

M, =YHI? = cHI

(19)

M, = XHP-H,(X* +Y?) =
20
=H1[ Dlelz—rz—Dlz} @0
My=-YHl=-r (21)
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My=0 (22}

Therefore the parameters of Equation 13 would
remain:

D="1=—HI
M,
M 2 2 ) 2

E_'f~=”][ Dl‘”]'—r'—Dl':| (23)
My 1

F=0

On the other hand, the equation of a circle with
center (Xo, yo) and radius R, is given by the expression:

(x—xg)? +(y-yg)* =R?

(24)
Developing and rearranging:
2 2 2 2 2
X5 4+y° —2xp x-2yq y+x5+y5 —R° =0 (25)
Identifying terms in Equation 13:
N D
i 2
E
Yo =~ 2 (26)
R x,:; + _vrz, -F

Substituting the values obtained in Equation 23:

Xp =
0 ~

HIT
- @7

Vo = DI* HI> =77 —Dl?}

2 2
R= x5+¥;

Operating into this equation:

H1?
4

H1?
+

R? = [ D]zmg—r?—ml}—
4r?

(28)
H1? p1? 1.7 2
- [mhml—z Dl~m~—r-}
477
Therefore, the diameter of the circumference
defined by three lengths of the benchmarks section
is given by the expression:

n

_HIDI

T

é HI?+D1? -2 p1PH1? -1 (29)

3 DIAMETRIC DEFORMATION

Once three points have been materialized in a tunnel
section, by means of the benchmarks, it is possible to
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Figure 3. Deformation of the convergence section.

determine a reference circumference whose diameter
is given by Equation 29.

According to the tunnel face progress away from
the monitoring section; this will deform the refer-
ence circumference. As the three measuring points are
fixed, it is possible to calculate the new diameter of
the circumference deformed, as illustrated in Figure 3.

Therefore is immediately obtaining the deforma-
tion suffered in the rock mass, simply by comparing
the diameter deformed of the circumference with the
initial.
=100

Eé(%)=

o~
30
- (30

The sign criteria are:

— Decrease in diameter: ep > 0
— Increase in diameter: ep <0

4 DIAMETRICAL DEFORMATION ANALYSIS

The use of the Diametric Deformation is advanta-
geous over simple analysis of the movements sustained
by three or more lines of convergence. Among these
advantages can be highlighted:

— The calculation is simple and does not require the
installation of special geotechnical devices.

— It integrates the movements sustained by different
points of the perimeter of the tunnel in a single
value.

— The value obtained, it is expressed as percentage of
deformation and is independent of the size of the
excavation.

— It allows to directly compare the actual trend of
the tunnel with results obtained in the stress-strain
analysis.

— It allows to apply stability criteria, based on the
percentage of rock mass deformation.



— In the case of deep tunnels, allows having an
estimation of the load state of the support.

As a result of the observations and measurements
by Sakurai (1983), it is usual to adopt the value of 1%
as the deformation limit of the tunnel from which are
observed signs of instability and difficulty in provid-
ing adequate support. However, as pointed out by Hoek
(2001), this 1% limit shall be taken as an indication of
increased difficulty in the excavation of tunnel and not
as a strict limit that should not be exceeded. Ideally,
the Diametric Deformation limit should be a parameter
obtained from geomechanical calculations. Once this
parameter and the conditions of application are estab-
lished, it is extremely easy to design a monitoring plan
based on alert levels.

Relative to the load level at which the support is
subjected in a deep tunnel, Hoek (2001) reported the
results of the influence of internal pressure support,
pi, in the deformation of the tunnel. The analysis was
performed using axial-symmetric models in finite ele-
ments for a wide range of different types of rock mass,
pressure fields and supports pressures. It is impor-
tant to note that these analyzes are valid for tunnels
at medium or high depths, not shallow tunnels.

Using curve-fitting techniques to the results of
the analysis, it was obtained an approximate relation
between the radial deformation of the tunnel (&) and
the ratio between pressure support (p;) and the field
pressure (po)

g,(%):t},ls[l—&][ﬁ 31)

| Wy ? " l|| 38 Pﬂ. L0.54 '
P Py :|

The compressive strength of the rock mass (o¢p)
is a particularly appropriate parameter to evaluate the
potential risk of instability that may experience a deep
tunnel. As proposed by Hoek (2001), it can be calcu-
lated after the intact rock strength (o;), the constant
m; and the Geological Strength Index (GSI). Hoek &
Marinos (2000), described in detail how to obtain these
parameters:

0., =0.0034 m’ &, [1.029+0.025 ¢ " (32)

In Figure 4, there is shown the variation of the radial
deformation of the tunnel expressed in Equation 31,
for different values of the ratio between the internal
pressure of support (p;) and the field pressure (py). It
is understood that the rock mass exerts no load on the
support when this ratio is zero (p; = 0)

5 APPLICATION CASE

As a case of application of the methodology proposed,
the excavation of the Tunnel of Larraskitu (Bilbao,
Spain) is presented. It is a highway tunnel, 12 m wide,
excavated in sedimentary rock, calcareous siltstones
and calcareous sandstones. In the middle section of
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Figure 4.

Influence of Internal Pressure of Support (p;) in
the deformation of the tunnel, after Hoek (2001).
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Figure 5. Benchmark section (CV-17) Tunnel of Larraskitu
(Bilbao’s South Metropolitan By-pass).

the tunnel, at depths around 200 m, large deforma-
tions were observed. Figure 5 presents the evolution
of the Diametric Deformation of the tunnel in one of
the benchmarks sections.

The graph shows the deformation caused by the
excavation of the parallel tunnel, separated two diam-
eters. At the moment when the deformation reached a
0.8% level, were evident the signals of support over-
load: load of the metallic arches, shotcrete cracks
and plates bolts lost, being necessary the support
reinforcement.

During the execution of tunnels, monitoring
included geomechanical rock mass classification
through Q and RMR indices, to determine the sup-
ports. Additionally GSI index was obtained. In addi-
tion to this geomechanical monitoring, there were
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Table 1. CV-17 section parameters.

Overburden (m) 199
Q 0.02
GSI 25
m; 8.3
y N/m?) 27,300
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Figure 6. Evolution of Diametric Deformation in CV-17.

large number of laboratory test data, from the geotech-
nical characterization performed during the drafting.
In the case of CV-17 section, the parameters used are
shown in Table 1.

Applying Equation 32, the compressive strength of
the rock mass is:
o, =147 MPa

o

(33)

Assuming that the pressure field is equal to the
lithostatic:

P, =199x27,300 = 5.43 MPa (34)

it is obtained:

e = 0,27 (35)
Py

In Figure 6 the Diametrics Deformations readings
have been overlapped on the relationship proposed by
Hoek (2001), see Equation 31.
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About 0.8% Diametric Deformation, the ratio
between the pressure of the support and the pressure
field is around 0.1, that is the support provides a 10%
of the lithostatic pressure. At the end of the excava-
tion of the tunnel, when the tunnel was stabilized and
before installing the final lining, this ratio was very
close to zero. That is, the support was not exercising
load to have reached equilibrium with the rock mass.

6 CONCLUSIONS

In this paper, we have obtained the analytical expres-
sion of the Diametric Deformation (g4) in a tunnel
from the measurements obtained with benchmarks, see
Equation 29 and 30.

From this value, we propose a methodology for
stress-strain control of the tunnel, based on the esti-
mation of a diametric deformation limit value that can
assume the support. As a general rule, we propose the
1% limit proposed by Sakurai, as indicative of the
existence of instabilities and possible support prob-
lems. However, this value must be determined in each
case by stress-strain analysis, preferably by numerical
methods.

Also the use of the expression given by Hoek (2001)
which correlates the support Internal Pressure (p;) with
the deformation of the tunnel has been analyzed. In
the example presented, this expression correlates quite
well with that observed during the excavation of the
tunnel.

It is for further study on the proposed methodology
for cases tunneling in highly anisotropic rock mass or
a ratio between horizontal and vertical pressures other
than one.
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